Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 759
Filtrar
1.
Parasitol Int ; 100: 102876, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38438077

RESUMO

The chewing louse genus Eutrichophilus Mjöberg has 19 species only associated with porcupines (Rodentia: Erethizontidae). Of these species, E. cercolabes, E. cordiceps, E. emersoni, E. minor, E. moojeni, and E. paraguayensis have been recorded in Brazil. In the present study, we report E. cordiceps for the first time in the São Paulo State (Bauru Municipality) and for the second time in the Santa Catarina State (Lages Municipality), providing scanning electron images and light microscopy for the eggs, as well as the first molecular data (18S rRNA) for the genus. Additionally, Bartonella sp. was detected for the first time in this chewing lice species.


Assuntos
Bartonella , Doenças das Aves , Iscnóceros , Porcos-Espinhos , Doenças dos Roedores , Animais , Árvores , Bartonella/genética , Brasil , Roedores
2.
Res Vet Sci ; 171: 105235, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554609

RESUMO

As ectoparasites and efficient vectors of pathogens fleas constitute a source of nuisance for animals as well as a major issue for public health in Algeria. In this study, a molecular survey has been conducted to investigate the presence of pathogens in fleas infesting domestic and wild carnivores in the central north and eastern north and south of Algeria. The molecular screening that targeted Acanthocheilonema reconditum, Bartonella spp.,and Dipylidium caninum, was supplemented by a comprehensive analysis of risk factors related to flea-borne pathogens, drawing data from all documentation across multiple languages and sources from Morocco, Algeria, and Tunisia. In the current study, several Bartonella spp. 56/430 (13.02%) and Dipylidium caninum 3/430 (0.7%) were identified. The sequencing results revealed 5/23 (21.74%) B. clarridgeiae, 3/23 (13.04%) B. henselae, and 3/23 (13.04%) B. vinsonii. The two haplotypes, H1 and H2, of D. caninum were identified for the first time in North Africa. The results of the Artificial Neural Network risk analyses unveiled that the prevalence of pathogens and the presence of host generalist fleas as well as the vectorial competence are the most determinant risk factors of flea-borne diseases in Maghreb.


Assuntos
Bartonella , Infestações por Pulgas , Sifonápteros , Animais , Argélia/epidemiologia , Infestações por Pulgas/epidemiologia , Infestações por Pulgas/veterinária , Infestações por Pulgas/parasitologia , Bartonella/genética , Medição de Risco
3.
Comp Immunol Microbiol Infect Dis ; 107: 102153, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460359

RESUMO

Climate change is causing many vectors of infectious diseases to expand their geographic distribution as well as the pathogens they transmit are also conditioned by temperature for their multiplication. Within this context, it is worth highlighting the significant role that fleas can play as vectors of important pathogenic bacteria. For this purpose, our efforts focused on detecting and identifying a total of 9 bacterial genera (Rickettsia sp.; Bartonella sp.; Yersinia sp.; Wolbachia sp., Mycobacterium sp., Leishmania sp., Borrelia sp., Francisella sp. and Coxiella sp.) within fleas isolated from domestic and peridomestic animals in the southwestern region of Spain (Andalusia). Over a 19-months period, we obtained flea samples from dogs, cats and hedgehogs. A total of 812 fleas was collected for this study. Five different species were morphologically identified, including C. felis, C. canis, S. cuniculi, P. irritans, and A. erinacei. Wolbachia sp. was detected in all five species identified in our study which a total prevalence of 86%. Within Rickettsia genus, two different species, R. felis and R. asembonensis were mainly identified in C. felis and A. erinacei, respectively. On the other hand, our results revealed a total of 131 fleas testing positive for the presence of Bartonella sp., representing a prevalence rate of 16% for this genus identifying two species B. henselae and B. clarridgeiae. Lastly, both Y. pestis and L. infantum were detected in DNA of P. irritans and C. felis, respectively isolated from dogs. With these data we update the list of bacterial zoonotic agents found in fleas in Spain, emphasizing the need to continue conducting future experimental studies to assess and confirm the potential vectorial role of certain synanthropic fleas.


Assuntos
Bartonella , Ctenocephalides , Felis , Infestações por Pulgas , Rickettsia felis , Rickettsia , Sifonápteros , Animais , Cães , Sifonápteros/microbiologia , Espanha/epidemiologia , Ctenocephalides/genética , Rickettsia felis/genética , Infestações por Pulgas/epidemiologia , Infestações por Pulgas/veterinária , Infestações por Pulgas/microbiologia , Bartonella/genética
4.
Vet Med Sci ; 10(3): e1417, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38516829

RESUMO

BACKGROUND: Hippoboscid flies are bloodsucking arthropods that can transmit pathogenic microorganisms and are therefore potential vectors for pathogens such as Bartonella spp. These Gram-negative bacteria can cause mild-to-severe clinical signs in humans and animals; therefore, monitoring Bartonella spp. prevalence in louse fly populations appears to be a useful prerequisite for zoonotic risk assessment. METHODS: Using convenience sampling, we collected 103 adult louse flies from four ked species (Lipoptena cervi, n = 22; Lipoptena fortisetosa, n = 61; Melophagus ovinus, n = 12; Hippobosca equina, n = 8) and the pupae of M. ovinus (n = 10) in the federal state of Saxony, Germany. All the samples were screened by polymerase chain reaction (PCR) for Bartonella spp. DNA, targeting the citrate synthase gene (gltA). Subsequently, PCRs targeting five more genes (16S, ftsZ, nuoG, ribC and rpoB) were performed for representatives of revealed gltA genotypes, and all the PCR products were sequenced to identify the Bartonella (sub)species accurately. RESULTS AND CONCLUSIONS: The overall detection rates for Bartonella spp. were 100.0%, 59.1%, 24.6% and 75.0% in M. ovinus, L. cervi, L. fortisetosa and H. equina, respectively. All the identified bartonellae belong to the Bartonella schoenbuchensis complex. Our data support the proposed reclassification of the (sub)species status of this group, and thus we conclude that several genotypes of B. schoenbuchensis were detected, including Bartonella schoenbuchensis subsp. melophagi and Bartonella schoenbuchensis subsp. schoenbuchensis, both of which have previously validated zoonotic potential. The extensive PCR analysis revealed the necessity of multiple PCR approach for proper identification of the ruminant-associated bartonellae.


Assuntos
Bartonella , Dípteros , Ftirápteros , Humanos , Animais , Dípteros/genética , Dípteros/microbiologia , Ftirápteros/genética , DNA Bacteriano/genética , Bartonella/genética , Ruminantes/genética , DNA , Alemanha/epidemiologia , Reação em Cadeia da Polimerase/veterinária
5.
mSystems ; 9(3): e0082923, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38380907

RESUMO

A novel Bartonella-like symbiont (BLS) of Tyrophagus putrescentiae was characterized. BLS formed a separate cluster from the Bartonella clade together with an ant symbiont. BLS was present in mite bodies (103 16S DNA copies/mite) and feces but was absent in eggs. This indicated the presence of the BLS in mite guts. The BLS showed a reduction in genome size (1.6 Mb) and indicates gene loss compared to Bartonella apis. The BLS can be interacted with its host by using host metabolic pathways (e.g., the histidine and arginine metabolic pathways) as well as by providing its own metabolic pathways (pantothenate and lipoic acid) to the host, suggesting the existence of a mutualistic association. Our experimental data further confirmed these potential mutualistic nutritional associations, as cultures of T. putrescentiae with low BLS abundance showed the strongest response after the addition of vitamins. Despite developing an arguably tight dependency on its host, the BLS has probably retained flagellar mobility, as evidenced by the 32 proteins enriched in KEGG pathways associated with flagellar assembly or chemotaxis (e.g., fliC, flgE, and flgK, as highly expressed genes). Some of these proteins probably also facilitate adhesion to host gut cells. The microcin C transporter was identified in the BLS, suggesting that microcin C may be used in competition with other gut bacteria. The 16S DNA sequence comparison indicated a mite clade of BLSs with a broad host range, including house dust and stored-product mites. Our phylogenomic analyses identified a unique lineage of arachnid specific BLSs in mites and scorpions.IMPORTANCEA Bartonella-like symbiont was found in an astigmatid mite of allergenic importance. We assembled the genome of the bacterium from metagenomes of different stored-product mite (T. putrescentiae) cultures. The bacterium provides pantothenate and lipoic acid to the mite host. The vitamin supply explains the changes in the relative abundance of BLSs in T. putrescentiae as the microbiome response to nutritional or pesticide stress, as observed previously. The phylogenomic analyses of available 16S DNA sequences originating from mite, scorpion, and insect samples identified a unique lineage of arachnid specific forming large Bartonella clade. BLSs associated with mites and a scorpion. The Bartonella clade included the previously described Ca. Tokpelaia symbionts of ants.


Assuntos
Acaridae , Bartonella , Ácaros , Ácido Tióctico , Animais , Acaridae/microbiologia , Simbiose , Ácaros/genética , Bactérias , Alérgenos , Bartonella/genética
6.
Comp Immunol Microbiol Infect Dis ; 107: 102150, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401221

RESUMO

The study aimed to determine the inter and intra-host Bartonella spp. genetic diversity in cats from Chile. 'Seventy-nine cats' blood DNA samples qPCR Bartonella spp. positive were subjected to T-A cloning of Bartonella spp. rpoB partial gene (825 bp), and sequencing by Sanger method. The sequences were submitted to phylogenetic and polymorphism analysis. Thirty-six (45.6%) samples were successfully cloned, generating 118 clones of which 109 showed 99.6%-100% identity with Bartonella henselae whereas 9 showed 99.8-100% identity with Bartonella koehlerae. Haplotype analysis yielded 29 different rpoB-B. henselae haplotypes, one (hap#2) overrepresented in 31 out of 33 cats, and 4 rpoB-B. koehlerae haplotypes, with hap#2 represented in all 3 B. koehlerae infected cats. More than one rpoB -B. henselae and B. koehlerae haplotypes were identified in individual cats, reporting by first time coinfection by different B. henselae/B. koehlerae rpoB variants in cats from Chile.


Assuntos
Infecções por Bartonella , Bartonella henselae , Bartonella , Doenças do Gato , Gatos , Animais , Haplótipos , Infecções por Bartonella/epidemiologia , Infecções por Bartonella/veterinária , Chile/epidemiologia , Filogenia , Bartonella/genética , Bartonella henselae/genética , Variação Genética , Doenças do Gato/epidemiologia
7.
Parasitol Res ; 123(2): 144, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411931

RESUMO

In the family of fruit bats, Pteropodidae Gray, 1821, as in the third most diverse group of bats (Chiroptera), the bacterium of the genus Bartonella was detected in several species as well as in a few species of their insect ectoparasites in some tropical and sub-tropical regions of the Old World. The Egyptian fruit bat, Rousettus aegyptiacus (Geoffroy, 1810), is one of the most widespread fruit bats, occurring between South Africa, Senegal, and Pakistan. In this bat species, Candidatus Bartonella rousetti has been detected in three African populations in Nigeria, Kenya, and Zambia. This fruit bat, however, also occurs in the Palaearctic, an area isolating the species geographically and phylogenetically from the Afrotropical part of its distribution range. We screened the blood-sucking bat flies (family Nycteribiidae) from R. aegyptiacus for the presence of the Bartonella bacteria. A rich material of bat fly Eucampsipoda aegyptia (Macquart, 1850), a monoxenous ectoparasite of the Egyptian fruit bats, was collected at 26 localities in seven countries (Egypt, Iran, Jordan, Lebanon, Oman, United Arab Emirates, and Yemen) of the Middle East in 2007-2013. The DNA isolates from the bat flies were subjected to a three-marker (gltA, ssrA, and intergenic spacer region, ITS) multilocus sequence analysis. Based on the amplification of the fragment of ssrA gene by a real-time PCR, 65 E. aegyptia samples from 19 localities in all seven countries were positive for the bacteria. One to five Bartonella-positive individuals of E. aegyptia were collected per one individual of R. aegyptiacus. An analysis of the ITS and gltA genes indicated the presence of an uncultured Bartonella sp., belonging to the Cand. B. rousetti genogroup, identified from populations of the Egyptian fruit bat in Africa. These results support the hypothesis that Bartonella's diversity corresponds to its host's diversity (and phylogenetic structure). Specific lineages of pathogens are present in specific phylogenetic groups of bats.


Assuntos
Bartonella , Quirópteros , Humanos , Animais , Filogenia , Oriente Médio , Bartonella/genética , DNA Intergênico , Quênia
8.
Eur J Clin Microbiol Infect Dis ; 43(4): 649-657, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38270806

RESUMO

PURPOSE: Fever of intermediate duration (FID) is defined as a fever in the community without a specific origin or focus, with a duration between 7 and 28 days. FID is often caused by pathogens associated with animal contact or their arthropods parasites, such as ticks, fleas, or lice. The purpose of this work is to design a collection of molecular tools to promptly and accurately detect common bacterial pathogens causing FID, including bacteria belonging to genera Rickettsia, Bartonella, Anaplasma, and Ehrlichia, as well as Coxiella burnetii. METHODS: Reference DNA sequences from a collection of Rickettsia, Bartonella, Anaplasma, and Ehrlichia species were used to design genus-specific primers and FRET probes targeted to conserved genomic regions. For C. burnetii, primers previously described were used, in combination with a newly designed specific probe. Real-time PCR assays were optimized using reference bacterial genomic DNA in a background of human genomic DNA. RESULTS: The four real-time PCR assays can detect as few as ten copies of target DNA from those five genera of FDI-causing bacteria in a background of 300 ng of human genomic DNA, mimicking the low microbial load generally found in patient's blood. CONCLUSION: These assays constitute a fast and convenient "toolbox" that can be easily implemented in diagnostic laboratories to provide timely and accurate detection of bacterial pathogens that are typical etiological causes of febrile syndromes such as FID in humans.


Assuntos
Bartonella , Coxiella burnetii , Rickettsia , Animais , Humanos , Rickettsia/genética , Bartonella/genética , Ehrlichia/genética , Coxiella burnetii/genética , Anaplasma/genética , DNA
9.
Comp Immunol Microbiol Infect Dis ; 105: 102125, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199070

RESUMO

The aim of this study was to investigate the presence and genetic characteristics of Bartonella quintana in pet cats from Urmia City, located in the northwest of Iran. Blood samples were collected from 200 cats, and their age, gender, and breed were noted. Nested-PCR and sequencing were used to identify B. quintana in positive samples, and the ftsZ gene sequences were analyzed using BioEdit software. The gene sequence obtained in this study exhibited 100.00 % similarity to reference sequences in the GenBank® database, and a phylogenetic tree was constructed using MEGA11. The results revealed that 15 % of the cats (30 out of 200 blood samples) tested positive for the B. quintana gene, with a 95 % confidence interval of 10.71 % to 20.61 %.


Assuntos
Bartonella henselae , Bartonella quintana , Bartonella , Animais , Gatos , Bartonella quintana/genética , Filogenia , Bartonella henselae/genética , Irã (Geográfico) , Genômica , Bartonella/genética
11.
Acta Trop ; 251: 107129, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266887

RESUMO

Although Bartonella spp. have been worldwide described in rodents and bats, few studies have reported these agents in marsupials. The present work aimed to investigate the occurrence and genetic diversity of Bartonella in small mammals (rodents, marsupials, and bats) and associated ectoparasites in two ecoregions (Amazonia and Cerrado biomes) in midwestern Brazil. For this purpose, DNA samples from 378 specimens of small mammals (128 rodents, 111 marsupials, and 139 bats) and 41 fleas (Siphonaptera) were screened for the Bartonella genus employing a quantitative real-time PCR assay (qPCR) based on the nuoG (nicotinamide adenine dinucleotide dehydrogenase gamma subunit) gene. Then, positive samples in qPCR were submitted to conventional PCR (cPCR) assays targeting the gltA, ftsZ, and rpoB genes. One (0.78 %) rodent, 23 (16.54 %) bats, and 3 (7.31 %) fleas showed positive results in the qPCR for Bartonella sp. After cPCR amplification and sequencing, 13 partial Bartonella DNA sequences of the following genes were obtained only from bats´ blood samples: 9 gltA (citrate synthase), 3 ftsZ (cell division protein), and 1 rpoB (RNA polymerase beta subunit). The maximum likelihood inference based on the gltA gene positioned the obtained sequences in three different clades, closely related to Bartonella genotypes previously detected in other bat species and bat flies sampled in Brazil and other countries from Latin America. Similarly, the ftsZ sequences clustered in two different clades with sequences described in bats from Brazil, other countries from Latin America, and Georgia (eastern Europe). Finally, the Bartonella rpoB from a specimen of Lophostoma silvicolum clustered with a Bartonella sp. sequence obtained from a Noctilio albiventris (KP715475) from French Guiana. The present study provided valuable insights into the diversity of Bartonella genotypes infecting bats from two ecoregions (Amazonia and Cerrado) in midwestern Brazil and emphasized that further studies should be conducted regarding the description and evaluation of different lineages of Bartonella in wild small mammals and their ectoparasites in different Brazilian biomes.


Assuntos
Infecções por Bartonella , Bartonella , Quirópteros , Infestações por Pulgas , Marsupiais , Sifonápteros , Animais , Bartonella/genética , Brasil/epidemiologia , Mamíferos/parasitologia , Infecções por Bartonella/epidemiologia , Infecções por Bartonella/veterinária , Roedores , Ecossistema , Filogenia
12.
Vector Borne Zoonotic Dis ; 24(1): 46-54, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38193886

RESUMO

Background: Rattus norvegicus can carry and transmit various zoonotic pathogens. Some studies were conducted to investigate a few zoonotic pathogens in Guangzhou, China, but no coinfections were investigated or specifically mentioned. Studies on the infections and the influencing factors of various zoonotic pathogens in R. norvegicus along the Zengjiang River in Guangzhou have not been carried out. Materials and Methods: In this study, R. norvegicus was captured in November 2020 and September 2021 along the Zengjiang River, and was tested for Bartonella spp., Leptospira spp., Orientia tsutsugamushi, Borrelia burgdorferi, Hantavirus (HV), Ehrlichia spp., and severe fever with thrombocytopenia syndrome virus (SFTSV) by the RT-PCR. Logistic regression analysis was used to determine the impact of habitat and demographic factors on the infections and coinfections of the surveyed pathogens. Results: In 119 R. norvegicus, the detection rates of Bartonella spp., Leptospira spp., O. tsutsugamushi, B. burgdorferi, and HV were 46.2%, 31.9%, 5%, 0.8%, and 18.5%, respectively. Ehrlichia spp. and SFTSV were negative. The triple coinfection rate of Bartonella spp., Leptospira spp., and HV was 11.8%. In addition, the coinfection of Bartonella spp., Leptospira spp., and B. burgdorferi was 0.8%. Dual coinfection of Bartonella spp. and Leptospira spp., Leptospira spp. and HV, Bartonella spp. and O. tsutsugamushi, Leptospira spp. and O. tsutsugamushi, and HV and O. tsutsugamushi was 9.2%, 3.4%, 1.7%, 1.7%, and 0.8%, respectively. Infections of these pathogens in R. norvegicus were found in habitats of banana plantation, grassland, and bush. Weight affected the infection of Bartonella spp., Leptospira spp., or HV in R. norvegicus. Conclusions: R. norvegicus along the Zengjiang River not only carried various potentially zoonotic pathogens but also had a variety of coinfections. Surveillance of the density and pathogens in R. norvegicus should be strengthened to reduce the incidence of relevant zoonotic diseases.


Assuntos
Bartonella , Coinfecção , Leptospira , Orthohantavírus , Doenças dos Roedores , Tifo por Ácaros , Animais , Ratos , Coinfecção/epidemiologia , Coinfecção/veterinária , Rios , China/epidemiologia , Zoonoses , Bartonella/genética , Ehrlichia , Tifo por Ácaros/veterinária
13.
Ticks Tick Borne Dis ; 15(2): 102290, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38070273

RESUMO

Tick-borne microorganisms in many tick species and many areas of China are still not thoroughly investigated. In this study, 224 ticks including two species (Haemaphysalis longicornis and Haemaphysalis qinghaiensis) were collected from four cities in Hebei, Shandong, and Qinghai provinces, China. Ticks were screened for the presence of tick-borne bacterial microorganisms including Rickettsia, Anaplasmataceae (Anaplasma, Ehrlichia, Neoehrlichia, etc.), Coxiella, Borrelia, and Bartonella. Two Anaplasma species (Anaplasma ovis and Anaplasma capra) were detected in H. longicornis from Xingtai City of Hebei Province, with a positive rate of 3 % and 8 %, respectively. A Coxiella species was detected in H. longicornis ticks from all three locations in Hebei and Shandong provinces, with the positive rate ranging from 30 to 75 %. All the 16S and rpoB sequences were very similar (99.77-100 % identity) to Coxiella endosymbiont of Haemaphysalis ticks. An Ehrlichia species was detected in H. qinghaiensis (6/66, 9 %) from Xining City, Qinghai Province. The 16S and groEL sequences had 100 % and 97.40-97.85 % nucleotide identities to "Candidatus Ehrlichia pampeana" strains, respectively, suggesting that it may be a variant of "Candidatus Ehrlichia pampeana". All the ticks were negative for Rickettsia, Borrelia, and Bartonella. Because all the ticks were removed from goats or humans and were partially or fully engorged, it is possible that the microorganisms were from the blood meal but not vectored by the ticks. Our results may provide some information on the diversity and distribution of tick-borne pathogens in China.


Assuntos
Anaplasmataceae , Bartonella , Borrelia , Ixodidae , Rickettsia , Doenças Transmitidas por Carrapatos , Carrapatos , Animais , Humanos , Carrapatos/microbiologia , Ixodidae/microbiologia , Rickettsia/genética , Anaplasma/genética , Ehrlichia/genética , Bartonella/genética , Anaplasmataceae/genética , Borrelia/genética , Cabras , China/epidemiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/microbiologia
14.
Parasitol Int ; 98: 102823, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37967717

RESUMO

Bats serve as natural hosts for various infectious agents that can affect both humans and animals, and they are geographically widespread. In recent years, the prevalence of bat-associated pathogens has surged on a global scale, consequently generating significant interest in bats and their ectoparasites. In this study, we specifically selected the Miniopterus fuliginosus as the host and conducted bat captures in Nanjian Yi Autonomous County, Dali Bai Autonomous Prefecture, and the other in Mouding Township, Chuxiong Yi Autonomous Prefecture, located in Yunnan Province, China. Ectoparasites were meticulously collected from the bat body surface, alongside blood samples for subsequent analyses. Following collection, the ectoparasites were methodically identified and subjected to comprehensive ecological analysis. Additionally, DNA was extracted from both the bat blood and bat flies, with conventional PCR techniques utilized for molecular screening of four pathogens: Anaplasma sp., Babesia sp., Hepatozoon sp., and Bartonella sp. The capture efforts yielded a total of 37 M. fuliginosus, from which 388 ectoparasites were recovered, including 197 gamasid mites (Cr = 50.77%, PM = 94.59%, MA = 5.32, MI = 5.63) and 191 bat flies (Cr = 49.23%, PM = 75.68%, MA = 5.16, MI = 6.82). Notably, Steatonyssus nyctali (Y = 0.28, m*/m = 2.44) and Nycteribia allotopa (Y = 0.23,m*/m = 1.54) predominated among different individuals of M. fuliginosus, exhibiting an aggregated distribution pattern. The infection rates of Bartonella sp. were identified to be 18.92% (7/37) among bats and 37.17% (71/191) among bat flies, based on the testing of 37 bats and 191 bat flies. Phylogenetic analysis demonstrated that the Bartonella sequences exhibited similarity to those found in bats and bat flies within China and South Korea. This study not only contributes to our comprehension of ectoparasite infection in M. fuliginosus but also establishes a foundation for potential exploration of their role as vectors.


Assuntos
Bartonella , Quirópteros , Ácaros , Animais , Humanos , Filogenia , China/epidemiologia , Bartonella/genética , DNA , Ácaros/genética
15.
Artigo em Inglês | MEDLINE | ID: mdl-38055380

RESUMO

The genus Bartonella encompasses 38 validated species of Gram-negative, facultative intracellular bacteria that colonize the endothelial cells and erythrocytes of a wide spectrum of mammals. To date, 12 Bartonella species have been recorded infecting humans, causing diseases of long historical characterization, such as cat scratch fever and trench fever, and emerging bartonellosis that mainly affect animal health professionals. For this reason, this study aimed to report a documented case of Bartonella bovis infecting a veterinarian from Mexico by the amplification, sequencing and phylogenetic reconstruction of the citrate synthase (gltA) and the RNA polymerase beta-subunit (rpoB) genes, and to report the natural course of this infection. To our knowledge, this work is the first to report the transmission of B. bovis via needlestick transmission to animal health workers in Latin America.


Assuntos
Infecções por Bartonella , Bartonella , Médicos Veterinários , Animais , Humanos , México , Filogenia , Células Endoteliais , Bartonella/genética , Infecções por Bartonella/diagnóstico , Infecções por Bartonella/veterinária , DNA , Mamíferos/genética
16.
An Acad Bras Cienc ; 95(suppl 2): e20220809, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37909607

RESUMO

Bartonella are rodent-borne bacteria that cause varied human etiologies. Studies on synanthropic rodents are rare, causing gaps in epidemiological knowledge. We tested bloodclot samples from 79 rats from an urban slum in Salvador, Brazil through PCR targeting gltA gene. Nine samples (11.4%) were positive: six had 100% identity with Bartonella sp. isolate JF429580 and 99.5% with B. queenslandensis strain AUST/NH8; three were 100% identical to isolate JF429532 and 99.7% to B. tribocorum. This is the second report on urban rat Bartonella indicating bacterial circulation at detectable rates. Its presence in rats from vulnerable human settlements demands public health attention.


Assuntos
Bartonella , Humanos , Ratos , Animais , Bartonella/genética , Reservatórios de Doenças , Brasil , Áreas de Pobreza , Roedores/microbiologia
17.
Braz J Infect Dis ; 27(6): 103701, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37980941

RESUMO

Leprosy reactions are an acute inflammatory phenomenon that can arise before diagnosis, during treatment, or after cure of leprosy. These reactions are considered one of the main diseases that cause physical disabilities. Immunosuppressive treatment for these immune responses makes these patients susceptible to coinfections, which can trigger new leprosy reactions. The main objective of this study was to evaluate the occurrence of infection by Bartonella sp. in blood samples from 47 patients who had untreatable episodes of type 2 leprosy reactions for more than six months, comparing them with a control group. Cultures and molecular methods (PCR) were used. Amplicons from species-specific reactions and sequencing showed a higher prevalence of Bartonella henselae infection in patients, 19/47 (40.4 %), compared to control, 9/50 (18.0 %), p = 0.0149. Five patients accepted treatment for coinfection, and all showed improvement in leprosy reactions with treatment for B. henselae infection. We conclude that these bacteria can trigger chronic reactions of type 2 leprosy and should be investigated in these patients. SUMMARY LINE: Patients who have chronic type 2 leprosy reactions are more susceptible to Bartonella henselae infection than controls: 19/47 (40.4 %) compared 9/50 (18.0 %), p = 0.0149.


Assuntos
Infecções por Bartonella , Bartonella henselae , Bartonella , Doença da Arranhadura de Gato , Coinfecção , Hanseníase , Humanos , Bartonella henselae/genética , Doença da Arranhadura de Gato/diagnóstico , Doença da Arranhadura de Gato/microbiologia , Bartonella/genética , Reação em Cadeia da Polimerase/métodos , Infecções por Bartonella/diagnóstico , Infecções por Bartonella/epidemiologia , Infecções por Bartonella/microbiologia
18.
J Clin Microbiol ; 61(12): e0084023, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-37888990

RESUMO

Numbers of new and revised microbial taxa are continuously expanding, and the rapid accumulation of novel bacterial species is challenging to keep up with in the best of circumstances. With that in mind, following the template of reports on prokaryotic species isolated from humans, this is now the second publication summarizing new and revised taxa in non-domestic animal species in the Journal of Clinical Microbiology. The majority of new taxa were obtained as part of programs to identify bacteria from mucosal surfaces and the gastrointestinal tract from healthy wildlife. A few notable bacteria included new Erysipelothrix spp. from mammalian and aquatic sources and a novel Bartonella spp. isolated from a rodent, both of which could be considered members of emerging and re-emerging genera with pathogenic potential in humans and animals.


Assuntos
Bactérias , Bartonella , Humanos , Animais , Animais Selvagens , Bartonella/genética , Roedores , Trato Gastrointestinal
19.
BMC Vet Res ; 19(1): 195, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805521

RESUMO

BACKGROUND: Bartonella henselae is one of the most commonly identified Bartonella species associated with several human diseases. Although B. henselae was detected in humans and cats in Turkey, they have not been genotyped previously. Therefore, this study aimed to genotype B. henselae samples (n = 44) isolated from stray cats using the multi-locus sequence typing (MLST) method. For this aim, eight different housekeeping markers were amplified by nested PCR and then sequenced to reveal sequence types (STs) of B. henselae samples. RESULTS: Allelic profiles obtained from 40 B. henselae isolates (90.9%) were compatible with available allelic profiles in the MLST online database. However, allelic profiles obtained from the remaining 4 B. henselae isolates (9.1%) were incompatible with the database. Among B. henselae isolates with compatible allelic profiles, 5 different STs including ST1, ST5, ST9, ST35 and ST36 were identified according to the B. henselae MLST online database. ST35 was the most prevalent ST with a prevalence rate of 29.5% (13/44), followed by ST36 with a prevalence rate of 22.7% (10/44). In addition, ST5 (16%, 7/44) and ST9 (18.2%, 8/44) were also among the prevalent STs. The prevalence of ST1 was 4.5% (2/44). For B. henselae isolates with incompatible allelic profiles, we recommended a new ST called ST38. CONCLUSION: The present study genotyped B. henselae samples isolated from stray cats in Turkey for the first time and ST1, ST5, ST9, ST35, and ST36 as well as a new sequence type named ST38 were identified among these B. henselae isolates.


Assuntos
Infecções por Bartonella , Bartonella henselae , Bartonella , Doenças do Gato , Gatos , Humanos , Animais , Bartonella henselae/genética , Tipagem de Sequências Multilocus/veterinária , Bartonella/genética , Infecções por Bartonella/epidemiologia , Infecções por Bartonella/veterinária , Reação em Cadeia da Polimerase/veterinária , Doenças do Gato/epidemiologia , DNA Bacteriano/genética
20.
PLoS Negl Trop Dis ; 17(10): e0011615, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37815991

RESUMO

Bartonella bacilliformis is a Gram-negative, aerobic bacterium and the known causal agent of Carrion's disease, still considered a neglected disease. There is limited information about the nucleotide sequences of this bacterium in international databases, and few studies have addressed the genetic diversity of B. bacilliformis. We analyzed a total of 20 isolates of B. bacilliformis from the Peruvian regions of Ancash and Cajamarca. Three genes (ialB, gltA, and rpoB) were sequenced in each isolate and nucleotide sequences retrieved from GenBank (16 B. bacilliformis genomes) were also included in the study. All this information was merged in order to obtain clearer evidence of the phylogenetic relationships of B. bacilliformis. In the phylogenetic analysis conducted with the concatenated markers, four isolates (B.b-1, B. b-3, B. b- 7, B.b-8) from the Ancash region were observed to form a subgroup different from B. bacilliformis type strain KC583, showing dissimilarity levels of 5.96% (ialB), 3.69% (gltA) and 3.04% (rpoB). Our results suggest that B. bacilliformis consists of two different subgroups. Future investigations are needed to establish the taxonomic status of these subgroups.


Assuntos
Infecções por Bartonella , Bartonella bacilliformis , Bartonella , Humanos , Peru/epidemiologia , Filogenia , Polimorfismo de Nucleotídeo Único , Infecções por Bartonella/epidemiologia , Infecções por Bartonella/microbiologia , Bartonella/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...